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General Features
of a third-generation (ECM  = 100 TeV)

hadron collider

1. Physics at the energy frontier:  a discovery
machine

2. Luminosity > 1034 cm-2 sec-1

3. Uses superconducting magnet technology

4. Requires a conservative design approach which
insures reliability at the design goals

5. Must be as cost-effective as possible

6. Will be an internationally-supported effort
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Snowmass ‘96 machine parameters
Parameter High field-new

technology
High field-
known
technology

Units

CM Energy 100 100 TeV
Dipole field 12.6 9.5 Τ
Circumference 104 138 km
Synchrotron radiation damping
time (horizontal amplitude) 2.6 4.6 hr
Synchrotron radiation damping
time (energy) 1.3 2.3 hr
Initial/peak luminosity .35/1.2 .35/1.0 1034 cm-2sec-1

β* 20 20 cm

Bunch spacing 16.7 16.7 nsec
Beam stored energy .89 1.18 GJ
Synchrotron radiation
power/ring

189 143 kW

Revolution frequency 2.89 2.18 kHz
Synchrotron frequency 8.9 5.8 Hz
Energy loss/turn 3678 2778 keV
Total current .05 .05 Amp
<β> 255 255 m

Tune 65 86
Half cell length (assumed
90ocells)

200 200 m

Beam pipe radius 1.65 1.65 cm
Beam pipe Cold, Cu Cold, Cu
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Beam parameters vs. storage time
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Arc lattice features
Cell parameters:

Phase advance: 90o

Separated function

.....
Quadrupole

Sextupole/
corrector

n Dipoles

The cell length/aperture tradeoff:

Cell length L , good field radius  rGF ,

L r r dI
n GF GF c∝ ∝γ

ε 2 2, 
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Schemes for damping control in a VLHC:

• Duomagnetic lattice

• Robinson wigglers

Can we build a combined function high-field
machine in which we retain transverse radiation

damping?
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Radiation damping rates

x-damping rate:

α γ
0 2

=
P

E

α αx xJ= 0

Pγ =radiation power

E-damping rate: α αE EJ= 0

y-damping rate: α αy yJ= 0

J J Jx y E+ + = 4

The Robinson theorem relates the partition numbers:

E =beam energy
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Partition numbers and radiation
integrals
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Duomagnetic combined function  FD lattice
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Radiation damping
Time (x) vs. Bd, Bf
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Radiation damping
Time (E) vs. Bd, Bf
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Design example and comparison with separated function

Combined Separated Units
Function Function

Defocusing Field 13.125 8.75 T
Focusing Field 4.375 8.75 T
Field Gradient 10.2 140 T/m

Phase/cell 9 0 9 0 degrees
Cell length 400 400 m

Number of cells 300 300
Circumference 140 140 km

Tune 7 4 7 4
x-damping time 1.4 5.1 hr
E-damping time 47.6 2.5 hr

 Rms normalized emittance 3 7 150 nm
Rms del-e/e 2 3 3.9 ppm

Energy loss/turn 3.18 2.54 MeV
Momentum Compaction 1.50E-04 1.82E-04
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Robinson Wigglers
Wiggler field Bw, length Lw

Wiggler field gradient

Dispersion in wiggler Dw

dB
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Design example parameters:
Bw=10 T ;Dw=5 m;          =100 T/m;

Period=10 m; Wiggle amplitude=25 µµµµm
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Design example results,  Robinson Wigglers

High Field High Field Low field Unit
Parameter Separ. Func. Comb. Func. Comb.func.

Energy 50.0 50.0 50.0 TeV
Dipole Field 12.5 12.5 2.0 TeV

Current 0.04 0.04 0.1 A
SR power 145.0 145.0 52.4 kW

Damping time-x 2.4 0.8 -2 .4 2.6 -114.0 3.8 h r
Damping time-E 1.2 20.0 0.6 1.1 28.5 -4 .4 h r

rms normalized emittance 128.0 44.0 138.0 0.1 nm
rms relative energy spread 4.7 19.5 3.3 4.6 1.3 ppm

Wiggler length 5.0 5.0 11.6 km
Wiggler power 2.8 2.8 16.1 kW
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Interaction Region: FLAT BEAMS
(Peggs, Harrison, Pilat, Syphers)

If the vertical dispersion and the linear coupling are well-controlled in the arcs, the
vertical emittance will damp to a value much smaller than the horizontal emittance,
resulting in flat beams  as in an electron storage ring.

Implications:

• The final focus optics can be a doublet, rather than a triplet

• The peak beta function is typically x10 smaller, for the same ββββ*, than with
round beam triplet optics=> field quality demands in the final focus quads
are relaxed

• Long-range tune shifts (mostly vertical) occuring before the beams
separate tend to be smaller
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Injector Options

• Injector in same tunnel as high-field
collider, with common magnet

• High-field collider with low-field full
energy injector
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Common-coil magnet
with dual low field, high
field apertures

R. Gupta

Injector in same tunnel as high-field
collider, with common magnet
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Low energy injector

50 TeV Injector

100 TeV Collider
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Magnets: Conductor Options
• Nb3Sn

• VLHC spec: Jc> 2000A/mm2 at 12 T, 4o K; <20 µm

filaments

• Strain-sensitive, wind and react technology required;
small filament diameters difficult to achieve

• HTS
• Very high critical field (>30 T); useful from 4o-30o K;

strain-intolerant (like A-15 compounds); moderate to high Jc

• Most likely candidates:BSCCO-2212,-2223; YBCO-123
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High Field Magnet Programs
• Fermilab: focus is on an 11 T magnet:  50 mm

Nb3Sn cos-theta dipole

• LBL: Nb3Sn common-coil block magnet
– short  (1 m) prototype tested at 6 T

– Ultimate goal: 14 T, highly modular design;

• BNL: Common-coil block magnet; hybrid with
NbTi background coils, modular Nb3Sn or HTS
inserts

• TAMU: Nb3Sn segmented block coil, using stress
management techniques; 16 T
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Vacuum
(W. Turner, Snowmass)

Synchrotron radiation power: 190
kW; beam lifetime (ττττpp = 32 hrs)

Ringwide average vacuum
requirement

for ττττgas~5ττττpp: 1.8 nTorr RTE CO

Needs a liner with distributed
cryosorber at 10-15o K to intercept
synchrotron radiation and pump

photodesorbed gases
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Beam screen
10-15o K
2% hole 
areaCryosorber

Magnet bore tube
1.8-25o K

Design simplifies if magnets use HTS at
~10-15oK

liner can be integrated to magnet bore tube
Magnets above~15o K: H2 is no longer

cryosorbed, liner must be cooled separately
from the magnet
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Cryogenics

• Large synchrotron radiation load, intercepted with the
beam screen, implies large cryogenic system

• High temperature magnet operation would simplify the
system

From Snowmass ’96 (MacAshan, Mazur)
Comparison of Cryogenic Systems for Different VLHC Magnets

Collider
Magnet

Operating
Temp.

Ring
Size

No  of
Stat.
(inc. 1
IR)

Heat
Load

Ideal
Pwr

Wall-
Plug
Power

K km 1.8 K 4.5 K 20 K 50 K Leads MW MW

NbTi, 1.8 138 20 115 413 0 1644 920 45 180

Nb3Sn, 4.5 104 18 0 66 420 1080 940 18 72

HTS, 25 104 18 0 15 590 1080 940 14 54
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Summary-high field VLHC
Major challenges

• Taking full advantage of radiation
damping to simplify accelerator design

and reduce cost

•Developing an economical high field
magnet

•Handling the synchrotron radiation
power and associated vacuum issues


